Diffractive optic fluid shear stress sensor
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Abstract: Light scattering off particles flowing through a two-slit interference pattern can be used
to measure the shear stress of the fluid. We have designed and fabricated a miniature diffractive
optic sensor based on this principle.
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1. Measurement concept

The goal of this sensor is to determine the shear stress of a fluid within the first few hundred microns from a wall.
Within this region, the velocity gradient is linear, u = o'y, where u is the velocity, o is the shear stress, and y is the
vertical coordinate. Our diffractive optical micro-sensor generates a linearly diverging fringe pattern as illustrated in

Fig. 1. The fringe spacing can be expressed as A = Ky , where K is the slope of the first non-vertical fringe.
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Figure 1. Schematic of the shear stress sensor principle.

As particles in the fluid flow through the linearly diverging fringes, they scatter light to a detector with a frequency f
that is proportional to the velocity and inversely proportional to the fringe separation, f=u/A. Using the

relations for # and A above, the measured frequency is directly proportional to the wall shear,
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This technique was first presented by Naqwi and Reynolds using conventional optics [1]. A non-linearity of the

velocity profile or the fringe pattern will translate into widening and skewness of the frequency distribution.

2. Design and modeling

A conceptual drawing of the micro shear stress sensor is shown in Figure 2. The diverging light from a diode laser
is focused by a diffractive optical element (DOE) to two parallel line foci. These foci are coincident with two slits
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in a metal mask on the opposite side of a quartz substrate. The light diffracts from the slits and interferes to form
linearly diverging fringes to a good approximation. The light scattered by particles traveling through the fringe
pattern is collected through a window in the metal mask. Another DOE on the backside focuses the light to an
optical fiber connected to a detector.
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Figure 2. Schematic of the shear stress sensor assembly.

A series of simulations were performed to aid in the design of the sensor. A finite-difference simulation of the
fringe pattern for 2 um wide slits separated by 10 um is shown in Figure 3. The fringe pattern displays a suitable
number of fringes for adequate measurements. The number of high-contrast fringes is determined by the slit width
and the divergence of the fringe pattern is determined by the slit separation.
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Figure 3. Fringe pattern resulting from 2 um slits separated by 10 um (propagation of a finite-difference solution
of slit diffraction when illumined by the dual-line-focus laser lens).




3. Fabrication and testing

The main sensor element was fabricated by two-sided lithography on a 500 um thick quartz substrate. The slits and
collecting window on the front were fabricated by direct-write electron-beam lithography followed by wet etching of
evaporated chrome. The polymethyl methacrylate (PMMA) diffractive optical elements on the back were fabricated
by analog direct-write electron-beam lithography followed by acetone development [2]. A photograph and atomic
force microscope scan of the dual-line focus-laser lens are shown in Fig, 4.
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Figure 4. Photograph (left) and AFM scan (right) of the center of the dual-line-focus laser lens

The shear stress sensor’s elements were assembled into a package (Fig. 5) with a diode laser (660 nm) and a port
for the collection fiber. The overall size of this prototype is 15 mm in diameter and 20 mm in length. The fringes
were imaged with a CCD camera using a microscope objective and are shown in Fig. 5. The fringe divergence was
measured to be linear with a slope in close agreement with theory. The contrast is very satisfactory and preliminary
tests using a moving surface through the fringe pattern yield a clear signal. Testing of the receiver side of the sensor
element is underway.
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Figure 5. Shear stress sensor assembly (left) and photographs of the fringes at different heights above the surface (right).
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Wall Shear Principle
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Wall Shear Principle
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Shear Stress Sensor Design
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Shear Stress Sensor Modeling

Cross-section through dual-line-focus laser lens
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Laser Lens Focusing Simulation
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Propagation Through Slits Simulation
(Finite-Difference)
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Measurement Volume Intensity for 2 um Slits
(Propagation of Finite-Difference Solution)
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Shear Sensor Fabrication
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» Define Ti/Pt alignment marks using optical
lithography

» Fabricate diffractive lenses using analog direct-
write electron-beam lithography
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Front-Side Lithography on Chrome
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E-Beam Fabrication of Analog Diffractive Optics

Fabrication Method

« Thin film of polymethyl-methacrylate
(PMMA - thin film Plexiglas) spun on
substrate

Thin film of PMMA on substrate material

» Direct-write analog-dose electron-beam
lithography using JEOL JBX-5DII (50 kV)

+ Electron beam breaks bonds in the PMMA - 50 keV
increases solubility in acetone electrons
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« Acetone etches exposed PMMA to produce
surface relief pattern

Advantages

» Arbitrary patterns

* No pattern misalignment

« Prototype elements are easily fabricated
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Dual-Line-Focus Laser Lens
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Collection Lens
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Packaging
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Fringe Pattern Images

« 2 micron slits separated by 10 microns
« Interference fringes at 50 and 150 microns

Slits 50pum from 150pum from
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Measured Fringe Separation
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Shear Stress Sensor Test Setup
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Signal with External Receiver
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Conclusion

« Designed a non-invasive fluid shear stress sensor

» Utilized a two-sided fabrication technique to realize the
diffractive optic sensor head.

- Tested the emitter side of the sensor and obtained good
agreement with the model

« Future work will include improvement of emitter/receiver
isolation and integration of the receiver fiber.
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